Abstract

We study properties of a class of spin singlet Mott states for arbitrary spin S bosons on a lattice, with particle number per cite n=S/l+1, where l is a positive integer. We show that such a singlet Mott state can be mapped to a bosonic Laughlin wave function on the sphere with a finite number of particles at filling {\nu}=1/2l. Spin, particle and hole excitations in the Mott state are discussed, among which the hole excitation can be mapped to the quasi-hole of the bosonic Laughlin wave function. We show that this singlet Mott state can be realized in a cold atom system on optical lattice, and can be identified using Bragg spectroscopy and Stern-Gerlach techniques. This class of singlet Mott states may be generalized to simulate bosonic Laughlin states with filling {\nu}=q/2l.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.