Abstract

SynopsisPhotogeneration of singlet oxygen molecules (1O2), their vibrationally excited stateand dimols (1O2)2has been shown by measuring photosensitised delayed luminescence in pigment-containing media. All singlet oxygen species are formed as a result of energy transfer to O2from triplet pigment molecules. Monomeric pigment molecules are the most efficient singlet oxygen generators. The1O2quantum yields are 40–80% in aerobic solutions of monomeric chlorophylls and pheophytins. Pigment aggregation causes a strong decrease in singlet oxygen production. The1O2quantum yield in chloroplasts has been estimated using literature and experimental data on formation of the chlorophyll triplet states in the photosynthetic apparatus. The most probable value is 0.1%. One of the major sources of singlet oxygen is likely to be the triplet states of newly formed pigment molecules which are not quenched by carotenoids and can be detected by measuring low-temperature pigment phosphorescence. Quenching of singlet oxygen by the thylakoid components has been analysed and the1O2lifetime estimated. The data suggest that carotenoids and chlorophylls are the most efficient physical1O2quenchers and the1O2lifetime is about 70 ns in thylakoids. The quantum yield of1O2-induced pigment photodestruction was estimated to be about 10−6–10−5. This value is close to the quantum yield of chlorophyll photobleaching experimentally observed in aerobic suspensions of isolated chloroplasts. The intensity of pigment phosphorescence at 77 K correlates with the rate of chlorophyll photobleaching in plant materials. The data suggest that1O2generation by the pigment triplet states is the most likely reason for chloroplast photodamage. The intensity of pigment phosphorescence can be used as an index of the degree of plant photo-oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.