Abstract
Correlated ab initio molecular orbital, DFT, QCISD, G3MP2, and QCISD(T) calculations have been used to investigate the geometries, energetics, and mechanisms governing the insertion reactions of 1CH2 into OH and NH bonds of water and ammonia, respectively, in gas phase adopting 6-311++g(d, p) basis set. It is found that 1CH2 reacts with water and ammonia to produce the ylide-like intermediates H2COH2 and H2CNH3, which in turn undergo 1,2-hydrogen shift to produce methanol and methylamine, respectively. Results obtained indicate that in the gas phase, the ylides and the transition states are located below the reactants' energy levels. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.