Abstract

We propose a minimal extension of the standard model (SM) by including a scalar triplet with hypercharge 2 and two vector-like leptons: one doublet and a singlet, to explain simulatenously the non-zero neutrino mass and dark matter (DM) content of the Universe. The DM emerges out as a mixture of the neutral component of vector-like lepton doublet and singlet, being odd under a discrete $Z_2$ symmetry. After electroweak symmetry breaking the triplet scalar gets an induced vev, which give Majorana masses not only to the light neutrinos but also to the DM. Due to the Majorana mass of DM, the $Z$ mediated elastic scattering with nucleon is forbidden. However, the Higgs mediated direct detection cross-section of the DM gives an excellent opportunity to probe it at Xenon-1T. The DM can not be detected at collider. However, the charged partner of the DM (often next-to-lightest stable particle) can give large dispalced vertex signature at the Large Hadron Collider (LHC).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.