Abstract

A polymerase chain reaction (PCR) based method of adding a single-stranded DNA (ssDNA) hairpin loop to one end of linear double-stranded (ds) DNA templates was developed. The loop structure serves as a fiducial marker in single molecule imaging by atomic force microscopy (AFM) and can be applied to study DNA–protein interactions. The nucleic acid end-labels allow discrimination of the polarity of the DNA template in the AFM while limiting non-specific interactions which might occur from non-nucleic acid labels. Homo-polynucleotide ssDNA loops made up of 20 base-pairs (bp) for each of the four bases (A, T, G, C) were investigated to determine the effects of sequence on template labelling. The products were produced with high efficiency and high yield with the loop readily distinguished from the dsDNA template by height and diameter in the AFM. The application of the method to study DNA transcription was investigated by firing Escherichia Coli RNA polymerase (RNAP) from a λPR promoter in the direction of the loop-labelled end. The ssDNA loops captured elongating complexes of RNAP, arresting transcription and preventing dissociation. The dual role of the loop as a polarity marker and retainer of previously active RNAP will allow mechanisms of gene expression to be studied with single molecule sensitivity by AFM. This will enable insight into molecular interactions of RNAP on single DNA templates in convergent or tandem transcription configurations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call