Abstract

Because of a lack of biomechanical studies of lateral elbow ligament reconstruction in the literature, the initial stability afforded by 3 different techniques of lateral ulnar collateral ligament reconstruction was evaluated in 8 cadaveric elbows. The arm was mounted in a testing apparatus, and passive flexion was performed with the arm in varus and valgus orientations. A pivot shift test was performed with the arm in the vertical orientation. An electromagnetic tracking device was used to quantify motion pathways. After intact testing, each specimen underwent sectioning of the radial collateral and lateral ulnar collateral ligaments from the lateral epicondyle. Reconstruction of the lateral ulnar collateral ligament was performed in a randomized sequence, consisting of proximal single-strand, distal single-strand, and double-strand tendon grafts. Division of the radial collateral and lateral ulnar collateral ligaments from the lateral epicondyle caused a significant decrease in rotational stability when the pivot shift test was being performed (P <.0001). Varus-valgus stability also decreased after transection of the radial collateral and lateral ulnar collateral ligaments (P <.0001). Reconstruction of the lateral ulnar collateral ligament restored elbow stability to that of the intact state. There was no significant difference in stability between the single- and double-strand repair techniques (P >.05). This study demonstrates that both single- and double-strand reconstructions restore varus and posterolateral elbow stability and may be considered appropriate reconstructive procedures in patients with symptomatic insufficiency of the lateral ligaments of the elbow. (J Shoulder Elbow Surg 2002;11:60-4.)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call