Abstract

We report the single-step synthesis of Ge nanowires encapsulated within multi-walled carbon nanotubes (MWCNTs) from a phenyltrimethylgermane (C 6H 5Ge(CH 3) 3) precursor, using a simple chemical vapor deposition (CVD) method. The MWCNT/germanium nanowires were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS) measurements. TEM analysis reveals that the nanowires consist of well crystallized Ge cores which are completely encapsulated by the sheath-like MWCNTs, the latter corresponding to a layer thickness of 5–10 nm. SEM images, corresponding to various stages of nanowire growth, indicate that MWCNT growth occurs at Ge nanoparticles and that the growing MWCNTs carry Ge as nanowires away from the nanoparticles. By optimizing the CVD parameters, nanowires can be produced with uniform length and diameter in the range 6–10 μm and 200–300 nm, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.