Abstract

In the present work, we have fabricated a novel mesoporous TiO2–rGO nanocomposite by a facile one-step solvothermal method using titanic sulfate as the TiO2 source. The as-prepared composites were characterized by transmission electron microscopy, X-ray diffraction; UV–Vis diffuse reflectance spectra, X-ray photoelectron spectroscopy and photoluminence spectra. In situ nucleation and anchoring of TiO2 nanoparticles onto a graphene sheet is favorable fpr forming an intimate interfacial contact, and the chemically bonded TiO2–rGO nanocomposites commendably enhanced their photocatalytic activity in the photodegradation of rhodamine B and phenol. The high photocatalytic activity of the as-synthesized nanocomposites are primarily ascribed to the mesoporous structure, efficient charge transportation and separation with enhanced visible light absorption, which come from the appealing nanoarchitecture, for instance, ultra-dispersed and ultra-small TiO2 nanocrystals along with intimate and absolute interfacial contact between the TiO2 nanocrystals and the graphene sheet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.