Abstract

Outer membrane vesicles (OMVs) are secreted by all Gram-ve pathogens. These nano-scale delivery vehicles contain discrete arrays of prokaryotic pathogenic determinants, including a family of low molecular weight (MW) lipidic quorum signaling alkyl-quinolones (AQs). These are synthesized from β-keto-fatty acids and function like primordial lipidic hormones, which regulate numerous pathogenic factors both inter-species and intra-species. Significantly, AQs can also directly exacerbate pathogenesis by cross-kingdom signaling with the host immune, metabolic, and other systems. In Pseudomonas aeruginosa more than 50 AQs are reported; many with pathogenic mechanisms that are largely unknown. Some of these AQs are exclusively associated with OMVs. Accurate characterization of these OMV-AQs may reveal novel mechanism of diseases and Pseudomonas aeruginosa presents an ideal model. Matrix-free laser desorption/ionization mass spectrometry (LDI-MS) technologies enjoy unique advantages in mass spectrometry (MS)-based imaging and low MW analysis. We report single-step isolation of Pseudomonas aeruginosa OMV on inert ceramic filters and high-resolution mass spectrometry (HRMS) analysis of AQs vesicle in situ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call