Abstract

Anti-doping rule violations related to the abuse of endogenous anabolic androgenic steroids can be currently discovered by the urinary steroidal module of Athlete Biological Passport. Since this powerful tool is still subjected to some limitations due to various confounding factors altering the steroid profile, alternative strategies have been constantly proposed. Among these, the measurement of blood concentrations of endogenous steroid hormones by LC-MS is currently of increasing interest in anti-doping, bringing significant advantages for the detection of testosterone abuse in females and in individuals with deletion of UGT2B17 enzyme. Although various research groups have made significant efforts in method development, there is currently no accepted or harmonized anti-doping method for quantitative analysis of the various testosterone doping markers in blood. In this study we present a UHPLC-MS/MS method for the quantification of major circulating steroid hormones together with an extended panel of glucuro- and sulpho-conjugated phase II metabolites of androgens. Chromatographic setup was optimized by comparing the performance of three different C18 stationary phases and by the careful selection of mobile phases with the aim of separating all the target steroids, including numerous isomeric/isobaric compounds. MS parameters were fine-tuned to obtain the sensitivity needed for measuring the target analytes, that show specific serum concentrations ranging from low pg/mL for less abundant compounds to μg/mL for sulpho-conjugated steroids. Finally, sample preparation protocol was developed for the extraction of steroid hormones from 200 μL of serum and the performance was evaluated in terms of extraction recovery and matrix effect. The final method was then applied to authentic serum samples collected from healthy volunteers (40 males and 40 females) at the Blood Bank of the City of Health and Science University Hospital of Turin. The analysis of these samples allowed to obtain results on serum concentrations of the targeted steroids, with particular emphasis on previously undiscovered phase II metabolites, such as the isomers of 5-androstane-3,17-diol glucuronide. This preliminary application also enabled measuring dihydrotestosterone sulphate in male samples, efficiently separating this analyte from its isomer, epiandrosterone sulphate, which circulates in blood at high concentrations.The promising results of this study are encouraging for the measurement of blood steroid profile markers in serum and plasma samples for Athlete Biological Passport purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.