Abstract
Quantum coherent control techniques are applied to achieve high spectral resolution nonlinear vibrational spectroscopy using a single ultrashort laser source. By controlling the spectral phase of ∼10 fs pulses, we are able to obtain detailed coherent anti-Stokes Raman (CARS) spectra in the important fingerprint spectral region, which reflects the structural chemical information. A full theoretical analysis and an experimental demonstration of two alternative schemes leading to spectral resolution two orders of magnitude better than the pulse bandwidth are presented. The first involves selective excitation of vibrational levels within the pulse bandwidth by periodic modulation of the spectral phase of the pulse. In the second scheme an effective narrow probing of the vibrational level has been achieved by phase shifting of a narrow spectral band. Single-pulse CARS offers an attractive alternative to conventional multibeam nonlinear vibrational spectroscopy techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.