Abstract
Single photon detectors are regarded as a key enabling technology in a wide range of medical, industrial, and military applications. However, the existing single photon detectors that can operate at or near room temperature have poor efficiency and high noise. Interestingly, the counterparts of these devices in nature, namely the rod cells, have amazingly high efficiency and low noise. In particular, the noise performance of the rod cells is five to six orders of magnitude better than the semiconductor based single photon detectors at room temperature. At Bio-inspired Sensors and Optoelectronics Laboratory, we explored the origin of such a high noise performance, and designed and implemented a novel semiconductor device based on the underlying detection mechanism in the rod cells. Our device shows very promising properties including orders of magnitude higher gain and lower noise compared with the existing devices. More interestingly, the low operating voltage of the device combined with high gain uniformity should allow, for the first time, realization of large imaging arrays with a high internal gain. Such imagers would open new opportunities for novel applications such as quantum ghost imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.