Abstract

We investigate cavity-assisted Stimulated Raman Adiabatic passage (STIRAP) schemes in semiconductor quantum dots (QDs) embedded in an optical cavity as a route for generation of high-quality single photons with programmable waveform. This work addresses the need for high-purity, indistinguishable photons in linear quantum computing, boson sampling, and quantum communications. We develop a time-dependent Maxwell-pseudospin model of single-photon generation through cavity-assisted adiabatic passage in a Λ-system isolated in a neutral InAs QD in a realistic GaAs/AlGaAs micropillar cavity. As a model Λ-system, we consider QD biexciton triplet states coupled to dark-exciton states by a circularly polarised pulse and a cavity field. Our simulations demonstrate control of the emitted single-photon pulse waveform by the driving pulse characteristics: shape, duration, intensity and detuning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call