Abstract

The plasmon-induced transparency (PIT) effect with unique spectrum transmission characteristics is a significant property of plasmonic structures. A resonant nanocavity with nanoscale dimensions around a single-photon emitter dramatically enhances the emission rate of the emitter. Thus, we propose detuned resonant nanocavities to manipulate the emission rate of the emitter inside, of which either cell consists of a rectangular resonator surrounded by a U-like resonator. An InGaAs quantum dot in a GaAs nanowire placed in the center of the detuned resonant nanocavity was employed as a single-photon emitter. The finite-difference time domain simulation revealed that the distribution of the electromagnetic field can be affected by changing the coupling intensity between the bright and dark states of the PIT. Consequently, the emission rate of the single-photon emitter was dramatically enhanced by more than 2000 times due to the Purcell effect induced by the PIT in the resonant cavity. With the achievement of an ultrafast single-photon emission rate, the proposed single-photon emitter could have diverse applications in quantum information and quantum communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.