Abstract
In hybrid electric vehicles (HEVs), the inverter is a critical component in the power module, which conditions the flow of electric power between the AC motor and the DC battery pack. The inverter includes a number of insulated gate bipolar transistors (IGBTs), which are high frequency switches used in bi-directional DC-AC conversion. The heat generated in the IGBTs can result in degraded performance, reduced lifetime, and component failures. Heat fluxes as high as 250 W/cm2 may occur, which makes the thermal management problem quite important. In this paper, the potential of self-oscillating jets to cool IGBTs in HEV power modules is investigated experimentally. A full factorial design of experiments was used to explore the impact of nozzle design, oscillation frequency, jet flow rate, nozzle-to-target distance, and jet configuration (free-surface or submerged) on heat transfer from a simulated electronic chip surface. In the free-surface configuration, self-oscillating jets yielded up to 18% enhancement in heat transfer over a steady jet with the same parasitic power consumption. An enhancement of up to 30% for the same flow rate (and velocity since all nozzles have the same exit area) was measured. However, in the submerged configuration, amongst the nozzle designs tested, the self- oscillating jets did not yield any enhancements in heat transfer over comparable steady jets. Results also suggest that oscillating jets provide a more uniform surface temperature distribution than steady jets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.