Abstract

This paper presents a method for an online real-time electrochemical impedance spectroscopy (EIS) measurement of batteries using closed-loop control of power converter. Unlike the previously proposed method which allows the measurement of the ac impedance for a single frequency, the presented method in this paper allows for obtaining the EIS for a spectrum of frequencies by using the information included in a single perturbation cycle, or a few cycles of perturbation to obtain a more accurate EIS with a very wide frequency range. This will result in faster EIS measurement for a spectrum of frequencies and under the same battery operating conditions. The presented method utilizes closed-loop control operation for the EIS measurement functionality, which allows for better control of the output voltage and for upgrading the concept to be able to achieve no added perturbation ripple at the output of the system. The presented online real-time EIS measurement method utilizes a power converter with closed-loop control in order to create an output voltage step-function perturbation at a given frequency to generate battery voltage and current responses. By applying Fourier analysis to these responses, an EIS can be obtained for a range of frequencies equal or higher than the perturbation frequency of the step function. In addition, this paper presents a method to eliminate the added perturbation ripple when two or more power converters are used. The theoretical basis and experimental prototype results are provided to illustrate and validate the presented method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.