Abstract

A supercritical-pressure light water cooled and moderated reactor (Super LWR) with a single-pass flow scheme is developed for simplifying upper core structures. Both coolant in the fuel channels and the water rods flow upward and are mixed in the upper plenum. It eliminates the moderator guide/distribution tubes in the upper core that were used in the previous Super LWR design adopting two-pass coolant flow scheme. This core design adopts a four-batch fuel management scheme and an out–in fuel loading pattern. One hundred and twenty-one fuel assemblies with an active height of 3.7 m are included. The flow rate fraction for water rods is 3.5%, and the thermal insulator is used to keep the moderator temperature below pseudocritical temperature. The equilibrium core is analyzed by using neutronic and thermal-hydraulic coupled calculation. The results show that the maximum cladding surface temperature (MCST) is limited to 485 °C with the average outlet temperature of 400 °C. The inherent safety is fulfilled by the positive water density reactivity coefficient and sufficient shutdown margin. On the other hand, the investigation of average outlet coolant temperature varying with MCST is carried out to explore the maximum outlet temperature by employing current MCST criterion and single-pass core design. The average outlet temperature increases with the MCST, and it achieves 465 °C with the thermal efficiency of 43.1% at the MCST criterion of 650 °C. The structure inside the reactor pressure vessel is simplified as a pressurized water reactor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call