Abstract

Our current understanding of the regulation of gene expression in the early Drosophila melanogaster embryo comes from observations of a few genes at a time, as with in situ hybridizations, or observation of gene expression levels without regards to patterning, as with RNA-sequencing. Single-nucleus RNA-sequencing however, has the potential to provide new insights into the regulation of gene expression for many genes at once while simultaneously retaining information regarding the position of each nucleus prior to dissociation based on patterned gene expression. In order to establish the use of single-nucleus RNA sequencing in Drosophila embryos prior to cellularization, here we look at gene expression in control and insulator protein, dCTCF, maternal null embryos during zygotic genome activation at nuclear cycle 14. We find that early embryonic nuclei can be grouped into distinct clusters according to gene expression. From both virtual and published in situ hybridizations, we also find that these clusters correspond to spatial regions of the embryo. Lastly, we provide a resource of candidate differentially expressed genes that might show local changes in gene expression between control and maternal dCTCF null nuclei with no detectable differential expression in bulk. These results highlight the potential for single-nucleus RNA-sequencing to reveal new insights into the regulation of gene expression in the early Drosophila melanogaster embryo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.