Abstract

BackgroundAssociation study is a powerful means for identifying molecular markers, such as single-nucleotide polymorphisms (SNPs) associated with important traits in forest trees. Catalpa fargesii Bur is a valuable commercial tree in China and identifying SNPs that associate with wood property would make a foundation of the marker-assisted breeding in the future. However, related work has not been reported yet.ResultsWe cloned a 2887 bp long sucrose synthase (SUS) gene from the genome of C. fargesii, which is a key enzyme in sucrose metabolism and also associated to wood formation in trees, coding 806 amino acids that expressed mainly in young branches, xylem, and leaves according to real-time quantitative PCR. Then we identified allelic variations of CfSUS associated with nine wood quality associated traits in Catalpa fargesii Bur. Totally, 135 SNPs were identified through cloning and sequencing the CfSUS locus from a mapping population (including 93 unrelated individuals) and 47 of which were genotyped as common SNPs (minor allele frequency > 5%) in the association population that comprised of 125 unrelated individuals collected from main distribution area. Nucleotide diversity and linkage disequilibrium (LD) analysis showed CfSUS has a relative low SNP diversity (πT = 0.0034) and low LD (r2 dropped below 0.1 within 1600 bp). Using the association analysis, we found 11 common SNPs and 14 haplotypes were significantly associated with the traits (false discovery rate, Q<0.1), explaining 3.21–12.41% of the phenotypic variance. These results provide molecular markers above associated with wood basic density, pore rate, and six other traits of wood, which have potential applications in breeding of Catalpa fargesii Bur.ConclusionWe first cloned a SUS gene in C. fargesii, then identified several SNPs and haplotypes that associated with wood properties within this gene, suggesting CfSUS participates in the wood formation of C. fargesii. Moreover, molecular markers we identified in this study may be applied into marker-assisted breeding of C. fargesii in the future.

Highlights

  • Association study is a powerful means for identifying molecular markers, such as single-nucleotide polymorphisms (SNPs) associated with important traits in forest trees

  • linkage disequilibrium (LD) did not extend over the entire gene (r2 < 0.1, within 1600 bp), which indicated that CfSUS have a potential utility of a gene-based association mapping method in developing SNP markers in C. fargesii

  • We identified 11 SNPs and 14 haplotypes were significantly associated with wood property by association analysis

Read more

Summary

Introduction

Association study is a powerful means for identifying molecular markers, such as single-nucleotide polymorphisms (SNPs) associated with important traits in forest trees. Catalpa fargesii Bur is a valuable commercial tree in China and identifying SNPs that associate with wood property would make a foundation of the markerassisted breeding in the future. The mechanisms influencing wood properties are unclear, some researchers have speculated that the specific structure, content, arrangement, and interaction of macromolecules in secondary cell walls may confer unique properties, making wood better suited for different applications [2]. This suggests that variations in wood properties may rely on variations in genes involved in the synthesis of lignin, cellulose, hemicellulose, and other components. Few genes that directly affect wood quality in forest trees have been identified due to the long lifecycle and lack of effective method to get the mutant for both forward and reverse genetics study [2, 3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call