Abstract
In this paper, the single-momentum path integral Monte Carlo method, previously developed for simple quantum systems and hydrogen plasma, is adapted to simulations of the uniform electron gas. The developed method is based on the combination of Wigner formalism and the path integral approach and is able to calculate various thermodynamic values and distribution functions without differentiation of the partition function. Since the exchange interaction between electrons is taken into account by the Gram determinants of the exchange matrix, the fermionic sign problem is reduced significantly, and in the case of coordinate-depending variables, is completely eliminated. The method was applied to study thermodynamic properties of the uniform electron gas in warm dense matter regime. Average kinetic, potential, and exchange-correlation energy were calculated in a wide range of states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.