Abstract

An essential trafficking mechanism of ciliogenesis is intraflagellar transport (IFT). The IFT processes at the ciliary base were largely unknown based on the diffraction-limited kymograph imaging. Here, we optimize single-molecule tracking localization microscopy to study IFT proteins at the ciliary base by observing IFT88-mEOS4b in live human retinal pigment epithelial cells. Surprisingly, we found that IFT88 proteins “switched gears” multiple times from ciliary base to cilium, revealing region-dependent slowdown of IFT proteins at the ciliary base: a slow to relatively fast movement from distal appendages (DAPs) to proximal transition zone (TZ), slow again in the distal TZ, and fastest in the ciliary compartment (CC). Our results further revealed that IFT88 could travel between the DAPs and the axoneme without following DAP structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.