Abstract

In this review we discuss results from temperature and pressure dependent single-molecule Förster resonance energy transfer (smFRET) studies on nucleic acids in the presence of macromolecular crowders and organic osmolytes. As representative examples, we have chosen fragments of both DNAs and RNAs, i.e., a synthetic DNA hairpin, a human telomeric G-quadruplex and the microROSE RNA hairpin. To mimic the effects of intracellular components, our studies include the macromolecular crowding agent Ficoll, a copolymer of sucrose and epichlorohydrin, and the organic osmolytes trimethylamine N-oxide, urea and glycine as well as natural occurring osmolyte mixtures from deep sea organisms. Furthermore, the impact of mutations in an RNA sequence on the conformational dynamics is examined. Different from proteins, the effects of the osmolytes and crowding agents seem to strongly dependent on the structure and chemical make-up of the nucleic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call