Abstract
Imaging single fluorescent proteins in living mammalian cells is challenging due to out-of-focus fluorescence excitation by common microscopy schemes. We report the development of a novel fluorescence microscopy method, reflected light sheet microscopy (RLSM), which allows selective plane illumination throughout the nucleus of living mammalian cells, for reducing out-of-focus fluorescence signal. Generation of a thin light sheet parallel to the imaging plane and close to the sample surface is achieved by reflecting an elliptical laser beam incident from the top by 45° with a small mirror. The thin light sheet allows for an increased signal-to-background ratio superior to previous illumination schemes and enables imaging of single fluorescent proteins with up to 100 Hz time resolution. We demonstrate the sensitivity of RLSM by measuring the DNA-bound fraction of glucocorticoid receptor (GR) and determine the residence times on DNA of various oligomerization states and mutants of GR and estrogen receptor (ER), enabling us to resolve different modes of DNA binding of GR. Finally, we demonstrate two-color single molecule imaging by observing the spatio-temporal co-localization of two different protein pairs. The combination of our single molecule measurements and statistical analysis reveals dynamic properties of transcription factors in live mammalian cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.