Abstract

There is increasing interest in the use of DNA polymerases (DNA pols) in next-generation sequencing strategies. These methodologies typically rely on members of the A and B family of DNA polymerases that are classified as high-fidelity DNA polymerases. These enzymes possess the ability to selectively incorporate the correct nucleotide opposite a templating base with an error frequency of only 1 in 106 insertion events. How they achieve this remarkable fidelity has been the subject of numerous investigations, yet the mechanism by which these enzymes achieve this level of accuracy remains elusive. Several smFRET assays were designed to monitor the conformational changes associated with the nucleotide selection mechanism(s) employed by DNA pols. smFRET has also been used to monitor the movement of DNA pols along a DNA substrate as well as to observe the formation of proof-reading complexes. One member among this class of enzymes, the large fragment of Bacillus stearothermophilus DNA polymerase I (Bst pol I LF), contains both 5′→3′ polymerase and 3′→5′ exonuclease domains, but reportedly lacks exonuclease activity. We have designed a smFRET assay showing that Bst pol I LF forms proofreading complexes. The formation of proofreading complexes at the single molecule level is strongly influenced by the presence of the 3′ hydroxyl at the primer-terminus of the DNA substrate. Our assays also identify an additional state, observed in the presence of a mismatched primer-template terminus, that may be involved in the transfer of the primer-terminus from the polymerase to the exonuclease active site.

Highlights

  • Structure-function relationships of high-fidelity DNA polymerases have been studied extensively by a variety of techniques with the aim of understanding the mechanism involved in base selectivity

  • Single-turnover pre-steady state kinetic analysis of correct deoxynucleoside triphosphate (dNTP) incorporation reveal that the Atto647N-labeled Bst pol I LF mutant had a kpol approximately 3-fold lower than wildtype Bst pol I LF (28.4 vs 90.9 s−1) at 25 °C

  • There has been great interest in the elucidation of the mechanism by which a DNA polymerase selects the correct dNTP substrate as well as how the enzyme processes mismatched bases incorporated into the primer strand [17,18,19,20]

Read more

Summary

Introduction

Structure-function relationships of high-fidelity DNA polymerases have been studied extensively by a variety of techniques with the aim of understanding the mechanism involved in base selectivity. Most of the kinetic studies have been carried out at Christian and Konigsberg the ensemble level and have led to the development of a general mechanism for the nucleotidyl transfer and exonuclease activities of DNA pols, but fail to account for their selectivity [1,2]. Single-molecule Forster resonance energy transfer (smFRET) has been used successfully to identify subpopulations of DNA polymerase-DNA complexes undergoing conformational changes and subdomain movements important for base selectivity and editing that would be obscured in experiments carried out at the ensemble level [4,5,6,7]. When smFRET experiments are coupled with structural and kinetic evidence, important insights into the mechanism of these enzymes are likely to emerge

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call