Abstract

We used single-channel electrical recordings and Langevin molecular dynamics simulations to explore the electrophoretic translocation of various beta-hairpin peptides across the staphylococcal alpha-hemolysin (alphaHL) protein pore at single-molecule resolution. The beta-hairpin peptides, which varied in their folding properties, corresponded to the C terminal residues of the B1 domain of protein G. The translocation time was strongly dependent on the electric force and was correlated with the folding features of the beta-hairpin peptides. Highly unfolded peptides entered the pore in an extended conformation, resulting in fast single-file translocation events. In contrast, the translocation of the folded beta-hairpin peptides occurred more slowly. In this case, the beta-hairpin peptides traversed the alphaHL pore in a misfolded or fully folded conformation. This study demonstrates that the interaction between a polypeptide and a beta-barrel protein pore is dependent on the folding features of the polypeptide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.