Abstract

Riboswitches represent a family of highly structured regulatory elements found primarily in the leader sequences of bacterial mRNAs. They function as molecular switches capable of altering gene expression; commonly, this occurs via a conformational change in a regulatory element of a riboswitch that results from ligand binding in the aptamer domain. Numerous studies have investigated the ligand binding process, but little is known about the structural changes in the regulatory element. A mechanistic description of both processes is essential for deeply understanding how riboswitches modulate gene expression. This task is greatly facilitated by studying all aspects of riboswitch structure/dynamics/function in the same model system. To this end, single-molecule fluorescence resonance energy transfer (smFRET) techniques have been used to directly observe the conformational dynamics of a hydroxocobalamin (HyCbl) binding riboswitch (env8HyCbl) with a known crystallographic structure.1 The single-molecule RNA construct studied in this work is unique in that it contains all of the structural elements both necessary and sufficient for regulation of gene expression in a biological context. The results of this investigation reveal that the undocking rate constant associated with the disruption of a long-range kissing-loop (KL) interaction is substantially decreased when the ligand is bound to the RNA, resulting in a preferential stabilization of the docked conformation. Notably, the formation of this tertiary KL interaction directly sequesters the Shine-Dalgarno sequence (i.e., the ribosome binding site) via base-pairing, thus preventing translation initiation. These results reveal that the conformational dynamics of this regulatory switch are quantitatively described by a four-state kinetic model, whereby ligand binding promotes formation of the KL interaction. The results of complementary cell-based gene expression experiments conducted in Escherichia coli are highly correlated with the smFRET results, suggesting that KL formation is directly responsible for regulating gene expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call