Abstract

Pluggable optics are being pushed to their limits in terms of face plate density and power consumption requirements within emerging mega data centers and HPCs applications. Future applications seek silicon photonics based optical engines with ability for high channel count and throughput beyond 1Tb/s. In this paper, we show our results in development of single mode polymer-based optical-electrical PCBs (OEPCBs) supporting the emerging Si-Pho host PCB platforms with multi-terabit on-board routing capability for chip-to-chip communications. Single mode polymer waveguides (SM-PWGs) are fabricated using new photopatternable optical silicone materials (WG-2211/WG-2511-WG2711) on conventional PCBs. Test platform PCB shows designs with varying core sizes (20/15/12/9/7µm) and channel lengths (5-15cm). The measurements results show single-mode waveguides loss as less 0.4 dB/cm at 1310nm. Furthermore, the result show new waveguide material to be compliance for both rigid and flexible PCBs. OEPCB compliance evaluation test results shown in the paper includes results of lamination, chemical compliance, drilling, and plating tests. The results shown in the paper show first time ever fabrication of single mode polymer waveguide OEPCBs in production environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.