Abstract

The interest in the application of cholesteric liquid crystals for tunable lasers has risen in the past few years. Here, we want to obtain a mechanically tunable laser device using cholesteric liquid crystal (CLC) elastomers as resonant cavity mirrors in a three-layer configuration, which includes in between an isotropic layer incorporating a laser dye as active medium. The transmission band-gap of the two CLC elastomers was shifted one with respect to the other in order to create a defect ("notch") in the middle of the band-gap which allowed a single-mode lasing from the system. The wavelength of the laser could be changed by mechanical tuning of the rubbery device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.