Abstract

In this paper, we present a numerical and experimental study of W3-4 photonic crystal (PhC) waveguide lasers fabricated on InP substrate. In such a PhC waveguide, the dispersion curve of the fundamental mode folds in the two-dimensional gap of the triangular lattice. Folding occurs at the Brillouin zone edge as in the case of genuine distributed feedback (DFB) lasers. Single-mode emission is presently observed in both electrical and optical pumping configurations. This behavior is attributed to the different levels of out-of-plane losses experienced by the two DFB mode components. Three-dimensional finite-difference-time-domain calculations are used to finely quantify the quality factors of the waveguide modes. The modal discrimination is shown to be reinforced when lasing occurs far from the conduction band edge. This trend is also predicted for other canonical waveguides in triangular PhCs as for instance W2-3 waveguides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.