Abstract

PurposeThis paper aims to present a novel modular design framework for the haptic teleoperation of single-master/multiple-slave (SM/MS) systems with cooperating manipulators.Design/methodology/approachThe user commands the remote-leader robot and the slave remote robot follows the leader in a leader–follower formation. The remote-slave is purely force-controlled. A virtual model of the remote environment is introduced between the local and remote environments through simulation software. Locally generated motion inputs are transmitted to the remote environment through the virtual model. A haptic coupling is designed in the virtual environment and the haptic feedback is transmitted to the user along with the forces measured in the remote environment. The controllers proposed in this work are experimentally evaluated with experienced and inexperienced users.FindingsThe proposed haptic interaction model contributes to the total force feedback and smoothens the high-frequency signals occurring at the physical interaction in the remote environment. Experimental results show that the implemented controllers including the proposed haptic interaction improve the teleoperation performances in terms of trajectory tracking. Furthermore, pure force control of the remote-slave is shown to enhance the robustness of the teleoperation against external disturbances. Satisfactory teleoperation performances are observed with both experienced and inexperienced users.Originality/valueThe proposed SM/MS teleoperation system involves a multi-purpose virtual simulator and a purely force-controlled remote-slave manipulator in a modular cooperative configuration. The uniquely defined structure of the proposed haptic coupling is used in modeling the interaction between the local and remote manipulators on the one hand, and between cooperating remote manipulators on the other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.