Abstract

The paper deals with some single-machine scheduling problems with setup time considerations where the processing time of a job is given as a function of its starting times and position in a sequence. The setup times are proportional to the length of the already processed jobs, i.e., the setup times are past-sequence-dependent (p-s-d). We consider the following objective functions: the makespan, the total completion time, the sum of the δth (\( \delta \geqslant 0 \)) power of job completion times, the total weighted completion time, the maximum lateness and the number of tardy jobs. We show that the makespan minimization problem, the total completion time minimization problem, and the sum of the δth power of job completion times minimization problem can be solved in polynomial time, respectively. We also show that the total weighted completion time minimization problem, the maximum lateness minimization problem and the number of tardy jobs minimization problem can be solved in polynomial time under certain conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call