Abstract
BackgroundOur previous studies found the single‐level cervical disc arthroplasty (CDA) might be a feasible treatment for the patients with reversible kyphosis (RK). Theoretically, the change of cervical alignment from lordosis to RK comes with the biomechanical alteration of prostheses and cervical spine. However, the biomechanical data of CDA in the spine with RK have not been reported. This study aimed at establishing finite element (FE) models to (1) explore the effects of RK on the biomechanics of artificial cervical disc; (2) investigate the biomechanical differences of single‐level anterior cervical discectomy and fusion (ACDF) and CDA in the cervical spine with RK.MethodsThe FE models of the cervical spine with lordosis and RK were constructed, then three single‐level surgical models were developed: (1) RK + ACDF; (2) RK + CDA; (3) lordosis + CDA. A 73.6‐N follower load combined with 1 N·m moment was applied at the C2 vertebra to produce cervical motion.ResultsAt the surgical level, “lordosis + CDA” had the greatest ROM (except for flexion) while “RK + ACDF” had the minimum ROM. However, at adjacent levels, the ROM of “RK + ACDF” increased by 4.05% to 38.04% in comparison to “RK + CDA.” “RK + ACDF” had the greatest prosthesis interface stress, while the maximum prosthesis interface stress of “RK + CDA” was at least 2.15 times higher than “lordosis + CDA.” Similarly, “RK + ACDF” had the greatest intradiscal pressure (IDP) at adjacent levels, while the IDP of “RK + CDA” was 1.6 to 6.7 times higher than “lordosis + CDA.” At the surgical level, “RK + CDA” had the greatest facet joint stress (except for extension), which was 1.9 to 11.2 times higher than “lordosis + CDA.” At the adjacent levels, “RK + CDA” had the greatest facet joint stress (except for extension), followed by “RK + ACDF” and “lordosis + CDA” in descending order.ConclusionsRK significantly changed the biomechanics of CDA, which is demonstrated by the decreased ROM and the significantly increased prosthesis interface stress, IDP, and facet joint stress in the “RK + CDA” model. Compared with ACDF, CDA overall exhibited a better biomechanical performance in the cervical spine with RK, with the increased ROM of surgical level and facet joint stress and the decreased ROM of adjacent levels, prosthesis interface stress, and IDP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.