Abstract

Quantum key distribution with solid-state single-photon emitters is gaining traction due to their rapidly improving performance and compatibility with future quantum networks. Here we emulate a quantum key distribution scheme with quantum-dot-generated single photons frequency-converted to 1550 nm, achieving count rates of 1.6 MHz with {g}^{left(2right)}left(0right)=3.6% and asymptotic positive key rates over 175 km of telecom fibre. We show that the commonly used finite-key analysis for non-decoy state QKD drastically overestimates secure key acquisition times due to overly loose bounds on statistical fluctuations. Using the tighter multiplicative Chernoff bound to constrain the estimated finite key parameters, we reduce the required number of received signals by a factor 108. The resulting finite key rate approaches the asymptotic limit at all achievable distances in acquisition times of one hour, and at 100 km we generate finite keys at 13 kbps for one minute of acquisition. This result is an important step towards long-distance single-emitter quantum networking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.