Abstract

A novel single-channel color information security system based on LU decomposition in gyrator transform domains is proposed. The original color image to be encoded is separated into its red, green and blue channels. They are modulated by corresponding random phase functions and then independently Fourier transformed. The transformed images of red and green channels are multiplied and then inverse Fourier transformed. The resulting image is phase- and amplitude truncated to obtain an encrypted image and an asymmetric decryption key, respectively. The encrypted image is multiplied by transformed image of blue channel and then performed LU decomposition. Finally, L and U parts are individually gyrator transformed at different transformation angles, which can be assigned to two different authorized users. The proposed single-channel encryption system is more compact than conventional three-channel encryption systems. Additionally, the ciphertexts are not color images but they are gray images which have obscure properties. The presented LU form is asymmetric. The two transformation angles of GT, three decryption keys for three channels and one asymmetric decryption key significantly improve the security and robustness of the proposed method. The encryption system can be realized digitally or optically. Numerical simulations demonstrate the feasibility and effectiveness of the suggested algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call