Abstract

The diversity of cell types in the brain and how these change during different developmental stages, remains largely unknown. The life cycle of insects is short and goes through 4 distinct stages including embryonic, larval, pupal, and adult stages. During postembryonic life, the larval brain transforms into a mature adult version after metamorphosis. The silkworm, Bombyx mori, is a lepidopteran model insect. Here, we characterized the brain cell repertoire of larval and adult B. mori by obtaining 50708 single-cell transcriptomes. Seventeen and 12 cell clusters from larval and adult brains were assigned based on marker genes, respectively. Identified cell types include Kenyon cells, optic lobe cells, monoaminergic neurons, surface glia, and astrocyte glia. We further assessed the cell type compositions of larval and adult brains. We found that the transition from larva to adult resulted in great expansion of glial cells. The glial cell accounted for 49.8% of adult midbrain cells. Compared to flies and ants, the mushroom body kenyon cell is insufficient in B. mori, which accounts for 5.4% and 3.6% in larval and adult brains, respectively. Analysis of neuropeptide expression showed that the abundance and specificity of expression varied among individual neuropeptides. Intriguingly, we found that ion transport peptide was specifically expressed in glial cells of larval and adult brains. The cell atlas dataset provides an important resource to explore cell diversity, neural circuits and genetic profiles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.