Abstract

Head and neck squamous cell carcinoma (HNSCC), like many tumors, is characterized by significant intra-tumoral heterogeneity, namely transcriptional, genetic, and epigenetic differences that define distinct cellular subpopulations. While it has been established that intra-tumoral heterogeneity may have prognostic significance in HNSCC, we are only beginning to describe and define such heterogeneity at a cellular resolution. Recent advances in single-cell sequencing technologies have been critical in this regard, opening new avenues in our understanding of more nuanced tumor biology by identifying distinct cellular subpopulations, dissecting signaling within the tumor microenvironment, and characterizing cellular genomic mutations and copy number aberrations. The combined effect of these insights is likely to be robust and meaningful changes in existing diagnostic and treatment algorithms through the application of novel biomarkers as well as targeted therapeutics. Here, we review single-cell technological and computational advances at the genomic, transcriptomic, and epigenomic levels, and discuss their applications in cancer research and clinical practice, with a specific focus on HNSCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call