Abstract

RNA interference (RNAi) enables the therapeutic use of small interfering RNAs (siRNAs) to silence disease-related genes. The efficiency of silencing is commonly assessed by measuring expression levels of the target protein at a given time point post-transfection. Here, we determine the siRNA-induced fold change in mRNA degradation kinetics from single-cell fluorescence time-courses obtained using live-cell imaging on single-cell arrays (LISCA). After simultaneous transfection of mRNAs encoding eGFP (target) and CayRFP (reference), the eGFP expression is silenced by siRNA. The single-cell time-courses are fitted using a mathematical model of gene expression. Analysis yields best estimates of related kinetic rate constants, including mRNA degradation constants. We determine the siRNA-induced changes in kinetic rates and their correlations between target and reference protein expression. Assessment of mRNA degradation constants using single-cell time-lapse imaging is fast (<30 h) and returns an accurate, time-independent measure of siRNA-induced silencing, thus allowing the exact evaluation of siRNA therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.