Abstract

We previously used single-cell transcriptomic analysis to characterize human fetal retinal development and assessed the degree to which retinal organoids recapitulate normal development. We now extend the transcriptomic analyses to incorporate single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), a powerful method used to characterize potential gene regulatory networks through the changes in accessible chromatin that accompany cell-state changes. The combination of scATAC-seq and single-cell RNA sequencing (scRNA-seq) provides a view of developing human retina at an unprecedented resolution. We identify key transcription factors relevant to specific fates and the order of the transcription factor cascades that define each of the major retinal cell types. The changing chromatin landscape is largely recapitulated in retinal organoids; however, there are differences in Notch signaling and amacrine cell gene regulation. The datasets we generated constitute an excellent resource for the continued improvement of retinal organoid technology and have the potential to inform and accelerate regenerative medicine approaches to retinal diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.