Abstract

We propose a nonlinear hybrid decision feedback equalizer (NHDFE) for single-carrier (SC) block transmission systems with nonlinear transmit high power amplifier (HPA), which significantly outperforms our previous nonlinear SC frequency-domain equalization (NFDE) design. To obtain the coefficients of the channel impulse response (CIR) as well as to estimate the nonlinear mapping and the inverse nonlinear mapping of the HPA, we adopt a complex-valued (CV) B-spline neural network approach. Specifically, we use a CV B-spline neural network to model the nonlinear HPA, and we develop an efficient alternating least squares scheme for estimating the parameters of the Hammerstein channel, including both the CIR coefficients and the parameters of the CV B-spline model. We also adopt another CV B-spline neural network to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can be estimated using the least squares algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. The effectiveness of our NHDFE design is demonstrated in a simulation study, which shows that the NHDFE achieves a signal-to-noise ratio gain of 4dB over the NFDE at the bit error rate level of $10^{-4}$ .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call