Abstract

A binary-input, memoryless channel with a continuous-valued output quantized to one bit is considered. For arbitrary noise models, conditions on an optimal quantizer, in the sense of maximizing mutual information between the channel input and the quantizer output, are given. This result is obtained by considering the “backward” channel and applying Burshtein et al.'s theorem on optimal classification. In this backward channel, there exists an optimal quantizer for which the quantizer preimage is convex. It is possible no optimal forward quantizer is convex, but by working with the backward channel, the optimal quantizer may be found. However, if the channel satisfies a certain condition, then a convex optimal forward quantizer exists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.