Abstract

Conserved noncoding sequences (CNSs) are evolutionarily conserved DNA sequences that do not encode proteins but may have potential regulatory roles in gene expression. CNS in crop genomes could be linked to many important agronomic traits and ecological adaptations. Compared with the relatively mature exon annotation protocols, efficient methods are lacking to predict the location of noncoding sequences in the plant genomes. We implemented a computational pipeline that is tailored to the comparisons of plant genomes, yielding a large number of conserved sequences using rice genome as the reference. In this study, we used 17 published grass genomes, along with five monocot genomes as well as the basal angiosperm genome of Amborella trichopoda. Genome alignments among these genomes suggest that at least 12.05% of the rice genome appears to be evolving under constraints in the Poaceae lineage, with close to half of the evolutionarily constrained sequences located outside protein-coding regions. We found evidence for purifying selection acting on the conserved sequences by analyzing segregating SNPs within the rice population. Furthermore, we found that known functional motifs were significantly enriched within CNS, with many motifs associated with the preferred binding of ubiquitous transcription factors. The conserved elements that we have curated are accessible through our public database and the JBrowse server. In-depth functional annotations and evolutionary dynamics of the identified conserved sequences provide a solid foundation for studying gene regulation, genome evolution, as well as to inform gene isolation for cereal biologists.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.