Abstract

Exploring unique single-atom sites capable of efficiently reducing O2 to H2 O2 while being inert to H2 O2 decomposition under light conditions is significant for H2 O2 photosynthesis, but it remains challenging. Herein, we report the facile design and fabrication of polymeric carbon nitride (CN) decorated with single-Zn sites that have tailorable local coordination environments, which is enabled by utilizing different Zn salt anions. Specifically, the O atom from acetate (OAc) anion participates in the coordination of single-Zn sites on CN, forming asymmetric Zn-N3 O moiety on CN (denoted as CN/Zn-OAc), in contrast to the obtained Zn-N4 sites when sulfate (SO4 ) is adopted (CN/Zn-SO4 ). Both experimental and theoretical investigations demonstrate that the Zn-N3 O moiety exhibits higher intrinsic activity for O2 reduction to H2 O2 than the Zn-N4 moiety. This is attributed to the asymmetric N/O coordination, which promotes the adsorption of O2 and the formation of the key intermediate *OOH on Zn sites due to their modulated electronic structure. Moreover, it is inactive for H2 O2 decomposition under both dark and light conditions. As a result, the optimized CN/Zn-OAc catalyst exhibits significantly improved photocatalytic H2 O2 production activity under visible light irradiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call