Abstract

In this paper, we report results on an original way to excite surface waves on a single-wire transmission line. Although these waves were proposed many decades ago by Goubau, the novelty of our structures is to achieve a broadband planar excitement. This configuration is very well suited for the terahertz frequency range and allows the investigation of biological entities with high spatial resolution with the use of novel biomicroelectromechanical systems, which include microfluidic functions. From experimental results, we compare different types of transitions from coplanar waveguides, and different substrates are also used. We show that the excitation is highly efficient and broadband for structures on a quartz substrate

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.