Abstract
Single-mode lasing in whispering-gallery mode (WGM) microresonators is challenging to achieve. In bottle microresonators, the highly non-degenerated WGMs are spatially well-separated along the long-axis direction and provide mode-selection capability. In this work, by engineering the pump intensity to modify the spatial gain profiles of bottle microresonators, we demonstrate a simple and general approach to realizing single-mode WGM lasing in polymer bottle microresonators. The pump intensity is engineered into an interference distribution on the bottle microresonator surface. By tuning the spacing between axial positions of the interference pump patterns, the mode intensity profiles of single-bottle WGMs can be spatially overlapped with the interference stripes, intrinsically enabling single-mode lasing and selection. Attractive advantages of the system, including high side-mode suppression factors >20 dB, large spectral tunability >8 nm, low-lasing threshold and reversible control, are presented. Our demonstrated approach may have a variety of promising applications, ranging from tunable single-mode lasing and sensing to nonlinear optics.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.