Abstract

A new single well injection withdrawal (SWIW) test was trialled at four landfills using the tracers lithium and deuterium, and by injecting clean water and measuring electrical conductivity. The aim of the research was to develop a practical test for measuring lateral contaminant transport to aid in the design of landfill flushing. Borehole dilution tests using dyes were undertaken prior to each SWIW test to determine background flow velocities. SWIW tests were performed at different scales by varying the volume of tracer injected (1 to 5,800m3) and the test duration (2 to 266days). Tracers were used individually, simultaneously or sequentially to examine repeatability and scaling. Mobile porosities, estimated from first arrival times in observation wells and from model fitting ranged from 0.02 to 0.14. The low mobile porosities measured rule out a purely advective-dispersive system and support a conceptual model of a highly preferential dual-porosity flow system with localised heterogeneity. A dual-porosity model was used to interpret the results. The model gave a good fit to the test data in 7 out of 11 tests (where R2≥0.98), and the parameters derived are compatible with previous experiments in MSW. Block diffusion times were estimated to range from 12 to 6,630h, with a scaling relationship apparent between the size of the test (volume of tracer used and/or the duration) and the observed block diffusion time. This scaling relationship means affordable small-scale tests can inform larger-scale flushing operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.