Abstract

This paper proposes a novel bi-directional hybrid fiber amplifier using a single-wavelength pump laser diode (LD) at 1495 nm. The hybrid amplifier is theoretically applied in a 50 km bi-directional local area network (LAN) with 26 ch × 10 Gb/s for bi-directional transmission. Thirteen C-band channels serve as downlink signals while the other 13 L-band channels are employed as uplink signals. Without loss of generality, four channels (two from each band) are experimentally analyzed. Erbium doped fiber (EDF) provides amplification for the C-band channels and Raman amplification amplifies the L-band channels. The pump efficiency is improved by employing a double-pass scheme for both the Erbium doped fiber amplifier (EDFA) and Raman fiber amplifier (RFA). The chromatic dispersion incurred by all the channels is precisely compensated for by inserting a fiber Bragg grating (FBG) array in appropriate locations along the dispersion compensating fiber (DCF) segments. Moreover, gain equalization of all the channels is achieved by adjusting the FBG reflectivity. Both the simulation results and experimental measurements confirm the proposed device feasibility and potential application in a bi-directional LAN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call