Abstract
As global data generation continues to rise, there is an increasing demand for revolutionary in-memory computing methodologies and efficient machine learning solutions. Despite recent progress in electrical and electro-optical simulations of machine learning devices, the all-optical nonthermal function remains challenging, with single wavelength operation still elusive. Here we report on an optical and monochromatic way of neuromorphic signal processing for brain-inspired functions, eliminating the need for electrical pulses. Multilevel synaptic potentiation-depression cycles are successfully achieved optically by leveraging photovoltaic charge generation and polarization within the photoferroelectric substrate interfaced with the graphene sensor. Furthermore, the demonstrated low-power prototype device is able to reproduce exact signal profile of brain tissues yet with more than 2 orders of magnitude faster response. The reported properties should trigger all-optical and low power artificial neuromorphic development based on photoferroelectric structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.