Abstract
The dynamics of a solvent is important for many chemical and biological processes. Here, the migration dynamics of a single water molecule is triggered by the photoionization of the 4-aminobenzonitrile-water (4ABN-W) cluster and monitored in real time by picosecond time-resolved IR (ps TRIR) spectroscopy. In the neutral cluster, water is hydrogen-bonded to the CN group. When this CN-bound cluster is selectively ionized with an excess energy of 1238 cm(-1), water migrates with a lifetime of τ = 17 ps from the CN to the NH2 group, forming a more stable 4ABN(+)-W(NH) isomer with a yield of unity. By decreasing the ionization excess energy, the yield of the CN → NH2 reaction is reduced. The relatively slow migration in comparison to the ionization-induced solvent dynamics in the related acetanilide-water cluster cation (τ = 5 ps) is discussed in terms of the internal excess energy after photoionization and the shape of the potential energy surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.