Abstract

Single-walled carbon nanotubes (SWCNTs) have been deposited onto the external surface of porous silicate materials by deposition from a solution of individualized, protonated SWCNTs in chlorosulfonic acid. It is demonstrated that the deposited SWCNTs can be deprotonated on the silicate surface, yielding a microporous or mesoporous material with individual or small bundles of SWCNTs. These carbon nanotubes present all the spectral characteristics of pristine SWCNTs, including van Hove transitions, Raman and NIR photoluminescence. Furthermore, it is shown that these materials can be used as scaffolds to study the interaction of SWCNTs with photoactive molecules loaded in the cavities of the porous silicate materials. As a proof-of-concept, we showed that the photoluminescence of tris(2,2′-bipyridine)ruthenium(II) can be quenched by protonated SWCNTs in the nearby surface decreasing its lifetime by nearly two orders of magnitude. This represents a novel application for these materials, especially considering the large amount of different molecules that can be immobilized in the internal cavities of these porous silicates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.