Abstract

Carboxylated single-walled carbon nanotubes (SWNTs) based chemicapacitive gas sensors were fabricated by AC dielectrophoretically aligning SWNTs across microfabricated gold electrodes with controlled density/device resistance. Two different sensing configurations (i.e., horizontal/in-plane and vertical/out-of-plane) were utilized to compare their sensing performance. Upon exposure to water vapor at room temperature, the response (R = [(C--C0)/C0] x 100%) increased with an increase in water vapor concentration similar to that of resistance response. In horizontal configuration, the response was increased with an increase in device resistance which might be attributed to preferentially alignment of semiconducting SWNTs during initial phase of alignment. However, the response was independent of device resistance in vertical/out-of-plane configuration which indicated that the sensing mechanism is based on the change of dielectric constant of gate and atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.